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Abstract
Ab initio calculations of the elastic constants for several cubic ordered structures of zirconium
carbonitride (ZrCx N1−x) and zirconium–titanium carbide (Zrx Ti1−x C) alloys were carried out.
The calculations of total and formation energies, bulk modulus and elastic constants as
functions of composition were performed with an ab initio pseudo-potential method. The
predicted equilibrium lattice parameters are slightly higher than those found experimentally (on
average by 0.2–0.4%). The predicted formation energies indicate that the ZrCxN1−x alloys are
stable even at 0 K in the whole concentration range, while the homogeneous Zrx Ti1−xC alloys
can be stabilized only at high temperatures. Spinodal decomposition of the latter alloys into
cubic domains takes place over a wide range of compositions and temperatures. For the
carbonitrides, the shear modulus G, the Young’s modulus E and the Poisson ratio σ reach an
extremum for carbon-rich alloys, and this is attributed to a maximum value of the shear
modulus C44 that corresponds to a valence-electron concentration in the range of 8.2–8.3. This
extremal behavior finds its origin in the response of the band structure of ZrCx N1−x alloys for
0 � x � 1, caused by the monoclinic strain that determines this shear modulus. In contrast, the
other shear modulus 1

2 (C11 − C12) does not exhibit any extremum over the whole composition
range. These results are in contrast with those for Zr–Ti carbides for which the elastic properties
gradually increase from ZrC to TiC.

1. Introduction

Experimentally, there has been much effort to improve the
mechanical properties of transition metal carbides and nitrides
by means of alloying metal–metal or non-metal–non-metal
elements [1–3]. Along with other transition metal carbonitride
and carbide alloys, the ZrC–ZrN and ZrC–TiC systems have
attracted considerable interest due to their high hardness and
melting temperature and comparatively high electrical and
thermal conductivities. As a consequence these alloys are
widely used for cutting tools and wear-resistant coatings [4].
Hardness and elastic properties of these alloys have been
thoroughly investigated during the last few decades. In short,
for the ZrC–ZrN alloys, the following main experimental data
were obtained: (i) the lattice parameter of these alloys is
a linear function of composition between the carbide and

nitride [5]; (ii) there is no ambiguity in determining micro-
and nanohardness (H ) of zirconium carbonitride as functions
of composition. Results on well-characterized specimens [6]
show that the hardness of ZrCxN1−x increases monotonically
with x , whereas other results on ZrC–ZrN alloys [7] exhibit
a maximum of H at a valence-electron concentration per
cell (VEC) of about 8.4; (iii) the bulk modulus (B) shows
a slight negative deviation from the mixing rule B(x) =
x BZrC + (1 − x)BZrN [6] and (iv) the shear (G) and
Young (E) moduli exhibit a slight maximum for x ∼ 0.7
(VEC ∼ 8.3) [6].

To the best of our knowledge, there are only a
few experimental studies of the structural and mechanical
properties of Zrx Ti1−x C alloys [1, 2, 8–10]. In particular, it
was established that these alloys exhibit a two-phase mixture
in the temperature range of 1400–2000 ◦C [8, 9] and that the
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micro-hardness of the ZrC–TiC system reaches a maximum at
intermediate composition [10].

Despite extensive theoretical studies of the electronic
structure and elastic properties of transition metal carbide and
carbonitride alloys such as, for example, TiC–TiN, HfC–HfN
and ZrC–NbC [11–14], so far there are no first-principles
calculations of the total energy and elastic constants of the
ZrC–ZrN and ZrC–TiC solid solutions. Using a muffin-
tin orbital method, Zhukov et al [11] have shown that the
maximum value of the formation energy of TiCx N1−x occurs
at x = 0.25, while pseudo-potential total-energy results [12]
indicate a maximum value at x = 0.75. Jhi and Ihm [12] also
found a positive deviation from the mixing rule for most of the
considered structure types. Using an ab initio pseudo-potential
approach, Jhi et al [13] studied the behavior of the shear
modulus C44 as a function of composition to interpret hardness
enhancement in TiCxN1−x , HfCxN1−x and ZrxNb1−x C alloys.
The full-potential linearized augmented-plane-wave (FLAPW)
method was used to account for the elastic behavior of
TiCx N1−x [14]. The aforementioned theoretical investigations
showed that an increase in hardness and elastic constants for
Ti and Hf carbonitrides, and Zrx Nb1−x C alloys at intermediate
compositions can be attributed to two electronic bands near
the Fermi level that shift in opposite directions under shear
monoclinic stress [13, 14].

From this brief review we conclude that there are
disagreements between some experimental data for ZrC–ZrN
systems, and that experimental results for ZrC–TiC alloys
are conflicting. We also note that a thorough theoretical
investigation of these pseudo-binaries is still lacking. The
ZrC–TiC system is based on metals from the same column of
the periodic table, which makes it different from other ternary
carbide systems that have been theoretically studied [13, 14].
Since the behavior of such materials can be understood
on a fundamental level in terms of their electronic band
structure, we carried out first-principles calculations of the
elastic properties of ZrCx N1−x and ZrxTi1−x C to account for
the experimental findings available for these alloys, as well
as to verify the suggested theoretical models that have been
proposed to explain strength enhancement in other similar
systems [13, 14]. In the case of Zrx Ti1−x C, we also studied the
structural stability of this supposedly unstable system [8, 9]
with a special emphasis on the temperature effect on alloy
stability.

In the present investigation, we performed first-principles
density functional theory (DFT) calculations to shed some
light on the electronic origin of the strength–composition
dependence and the structural stability of ZrC–ZrN and
ZrC–TiC systems. Ab initio self-consistent pseudo-potential
band structure calculations of several cubic ordered structures
representing ZrCx N1−x and ZrxTi1−x C alloys have been
performed. The composition dependence of the lattice
parameter a, Gibbs free energy of mixing �Gmix, elastic
constants C11, C12 and C44, derived moduli B , G and E , and
of the Poisson ratio σ have been predicted and analyzed. The
established trends are explained in terms of the modifications,
under the corresponding strains, of specific features of the band
structure.

2. Computational approach

Scalar-relativistic band structure calculations within the local-
density approximation of DFT were carried out using the
Quantum-ESPRESSO first-principles code [15] for eight-
atom cubic supercells of Zr4CnN4−n and ZrnTi4−nC4, n =
0, 1, 2, 3, 4, representing zirconium carbonitride, ZrCx N1−x ,
and Zrx Ti1−xC alloys, respectively. Atomic relaxations were
neglected, since they were found to be very small with
little impact on the behavior of the mechanical properties as
functions of composition [12]. Vanderbilt ultra-soft pseudo-
potentials were used to describe electron–ion interactions [16].
In the Vanderbilt approach [16], the orbitals are allowed to
be as soft as possible in the core regions so that their plane-
wave expansion converges rapidly. The semi-core states were
treated as valence states. For the zirconium and titanium
pseudo-potentials, the nonlinear core corrections were taken
into account [15]. To describe exchange–correlation energy,
the generalized gradient approximation (GGA) of Perdew et al
[17] was used. The criterion of convergence for the total energy
was 10−6 Ryd/formula unit. To speed up convergence, each
eigenvalue was convoluted with a Gaussian with a width of
20 mRyd. Since we dealt with different structures, a similar
set-up was used for the basis set, tail energies and k-point
mesh. The cutoff energy for the plane-wave basis was set
to 56 Ryd. The integration in the Brillouin zone was done
with a number of special k-points determined according to
the Monkhorst–Pack scheme [18]. We selected the minimal
sets of k-points (Nk) in the irreducible wedge of the Brillouin
zone (BZ) to guarantee that the total energy was changing
by no more than 1 mRyd/formula unit by further increasing
the number of wavevectors. The following structures were
considered: simple cubic (12 × 12 × 12 grid, Nk = 84),
orthorhombic (8 × 8 × 8 grid, Nk = 125) and monoclinic
(8 × 8 × 8 grid, Nk = 170). No extrapolation to an
infinite number Nk was applied. The density of states (DOS)
of the strained materials was computed using the following
finer k-point meshes: (10 × 10 × 10 grid, Nk = 216) and
(10 × 10 × 10 grid, Nk = 312) for the orthorhombic and
monoclinic structures, respectively, with a tetrahedron method
for integration [15].

The elastic moduli of a cubic crystal may be divided into
two classes, the bulk modulus B = 1

3 (C11 + 2C12) and the two
shear moduli, C ′ = 1

2 (C11 − C12) and C44. The bulk modulus
was calculated by fitting the total energy–volume, ET (V ),
curve to the traditional Murnaghan equation of state [19].
To calculate the modulus C ′ we used the volume-conserving
orthorhombic strain [14]:

x ′ = (1 + ε)x,

y ′ = (1 + ε)−1 y,

z′ = z,

(1)

and for the elastic modulus C44, we used the volume-
conserving monoclinic strain [14]:

x ′ = x + γ y,

y ′ = y,

z′ = z.

(2)
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Figure 1. Lattice parameters of ZrCx N1−x (a) and Zrx Ti1−x C (b) versus composition. Here and in the following figures the solid or dashed
line is a polynomial fit to the data points (to be considered as a guide to the eyes).

It should be noted that these strains differ from the strain
tensors suggested by Mehl [20]. The strains change the total
energy as follows [20]:

ET (V , δ) = a + bδ2 + O(δ4), (3)

where V is the volume, a and b are the fitting coefficients, δ =
{ε, γ }, b(ε → 0) = (C11 − C12)V and b(γ → 0) = 1

2 C44V .
Thus, once B , b(ε) and b(γ ) are determined, the elastic moduli
C11, C12 and C44 can be calculated. The use of the strains (1)
and (2) allowed us to avoid the consideration of tetragonal and
trigonal distortions that are sometimes used [21–23].

For the maximal values of the strains ε and γ , we used
those suggested in [20]. In particular, we have chosen εi

and γi , i = 1, 2, 3, 4, 5, and ε5 = 0.05, γ5 = 0.07. The
total energy ET (i) was calculated by taking an average of
the computed ET (δi ) over different meshes, weighted by the
number of points in the mesh.

Because of symmetry, the ZrC0.5N0.5 and Zr0.5Ti0.5C
compositions were calculated under the strains ε and γ

for three atomic configurations in the non-metal and metal
sublattices, respectively. Therefore the resulting elastic moduli
for this composition were evaluated as an average value
between these configurations.

The band energies associated with the valence band
contributions to the total energies were computed according to
EB = ∫

E N(E) dE , where N(E) is the DOS, E is the energy
and the integration is performed up to the Fermi energy, EF.

In the case of transition metal compounds, obtained either
by hot-pressing [1–3] or by using thin-film technology [4],
experiments can only determine the isotropic bulk modulus
B and the shear moduli of polycrystalline aggregates of small
crystallites. To take into account this fact, we used a scheme
suggested by Mehl [20] for the determination of G, E and σ .

The formation energy (�EForm) of these alloys was
determined as follows:

�EForm(x) = ET (Zrx Ti1−x C)−x ET (ZrC)−(1−x) ET (TiC),

(4)
as a function of composition. (For ZrCxN1−x , a similar
expression was considered.) The resulting formation energies
were then used to calculate the Gibbs free energies of mixing
for ZrxTi1−x C alloys:

�Gmix = �EForm − T �S, (5)

where T is the temperature and �S is the configurational
entropy for an ideal binary mixture (in our case, the pseudo-
binary ZrC–TiC mixture) given by

�S = −R[x ln(x) + (1 − x) ln(1 − x)], (6)

where R is the ideal gas constant and x is the ZrC mole fraction
in Zrx Ti1−xC.

3. Results and discussion

In figure 1, we show the concentration dependence of the lattice
parameter for ZrCx N1−x and Zrx Ti1−xC alloys. One can see
that, in the case of the carbonitrides, the lattice parameter
varies almost linearly with composition, in agreement with
the experimental findings [5]. The calculated values slightly
exceed the experimental ones (by approximately 0.2–0.4%).
For Zrx Ti1−xC, we note that the lattice constant (a) shows a
slight positive deviation from the mixing rule a(x) = x ·aZrC +
(1−x) ·aTiC, which usually indicates a tendency towards phase
separation.

The Gibbs free energy of mixing of ZrCx N1−x , calculated
at 0 K (i.e. formation energy), displayed in figure 2(a) as
a function of composition x , indicates that, in the entire
composition range, it is energetically favorable for TiC and
TiN to mix and form alloys, in agreement with experiment [6].
The polynomial fit to the calculated energies clearly points to
a minimum of the formation energy at around x ∼ 0.6.

In contrast to zirconium carbonitrides, the formation
energy of zirconium–titanium carbide alloys is positive in the
entire composition range (cf figure 2(b)), which implies that
the alloys are not stable, and should decompose into ZrC
and TiC compatible with the predicted chemical driving force
�EForm. However, Zrx Ti1−xC alloys can be stabilized in some
range of composition, depending on temperature, since the
configurational entropy �S (equation (6)) is always positive
and promotes a decrease in �Gmix (equation (5)). We note
from figure 2(b) that, at lower temperatures, where T �S is
smaller than �EForm, �Gmix develops a negative curvature
(∂2�Gmix/∂x2 < 0) around equi-atomic composition. Here
the mixture is not stable for all compositions. Along with
this, local minima located at low and high compositions form.
These local points defined by the common tangent construction
are known as binodal. An increase in temperature leads to a

3
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Figure 2. Gibbs free energy of mixing (�Gmix) versus composition for (a) ZrCx N1−x at zero temperature and (b) Zrx Ti1−x C at 0, 2000, 3000,
4000 and 4500 K; and (c) calculated temperature–composition phase diagram for Zrx Ti1−x C, showing binodal and spinodal with TiC and ZrC
chosen as reference states (c).

decrease in the difference between �EForm and T�S and to a
coincidence of these local minima at a maximum temperature.
Thus, a miscibility gap forms in the phase diagram for
�EForm > T �S. The binodal line confines the composition–
temperature range of instability of the homogeneous mixture.
However, it is easy to see that, inside the binodal region,
the zones of local stability with respect to small composition
fluctuations in the mixture can exist. In such zones, the
Gibbs free energy of mixing develops a positive curvature
(∂2�Gmix/∂x2 > 0). The limit of local stability with
respect to small fluctuations is defined by the condition:
∂2�Gmix/∂x2 = 0 that defines the spinodal line. It is well
known that, if ∂2�Gmix/∂x2 < 0, the mixture is intrinsically
unstable and will rapidly separate into two phases by spinodal
decomposition, whereas if ∂2�Gmix/∂x2 > 0, the mixture is
metastable and phase separation will take place by nucleation
and growth [4]. Figure 2(c) shows the binodal (solid) and
spinodal (dashed) lines for Zrx Ti1−x C (inside the spinodal:
∂2�Gmix/∂x2 < 0). It is clear from figure 2(c) that at
room temperature the chemical binodal (spinodal) composition
ranges from 0.00 to 1.00 (0.015 to 0.97). The binodal and
spinodal lines coincide at a temperature T ∼ 4550 K and
for a composition x ∼ 0.38. The temperature–composition
phase diagram is limited in temperature by melting, or by a
possible dissociation into metal and carbon (not considered
in the present work). For the sake of comparison, the
melting temperatures of ZrC and TiC are about 3800 and
3500 K, respectively [1, 2]. Hence, our results indicate a
spinodal decomposition of ZrxTi1−x C alloys in a wide range
of temperatures and compositions, which is consistent with
the experimental data available for Zr–Ti carbide films [24].
Based on the phase diagram presented in figure 2(c), one can

predict an enhancement of the mechanical properties of the
ZrC–TiC system after annealing, caused by the existence of
a spinodal decomposition. The latter has been verified in
a number of alloy systems and can effectively improve the
mechanical properties by providing additional obstacles for
dislocation motion, resulting in the well-known precipitation
or age-hardening phenomenon [4].

In table 1 we summarize the results of the calculated and
experimental elastic constants. For ZrN and ZrC our calculated
elastic moduli are in good agreement with the analogous
experimental and theoretical data, except with those reported
in [21], but this discrepancy can be attributed to the specific
procedure that was used to determine the elastic constants.
For TiC, we note that our theoretical values of C11 and C44

agree well with the experimental data [26, 29–31], while the
calculated value for C12 is higher than the experimental values.
As shown in table 1 our results are consistent with those
obtained in previous theoretical investigations [12, 14, 28].

The dependence of the shear moduli C ′ and C44 on
the VEC are shown in figure 3. For ZrCx N1−x alloys, the
evolution of the shear modulus C ′ with composition x is
monotonic: C ′ gradually increases with VEC. In contrast,
the C44 modulus reaches a maximum around VEC ∼ 8.3.
A different conclusion is drawn for Zrx Ti1−xC alloys: here
all the moduli gradually decrease with an increase in ZrC
composition, with a negative deviation from the mixture rule.
We conclude that, for the TiC–ZrC system, the elastic constants
vary monotonically with composition, due to the similarity of
their band structures: the Fermi level is located in a minimum
of the DOS at all compositions (not shown). The elastic
response of such structures to an orthorhombic or a monoclinic
strain is expected to be similar.

4
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Figure 3. Shear moduli C ′ = 1
2 (C11 − C12) (◦) and C44 (•) for ZrCx N1−x (left) and Zrx Ti1−x C (right).

Table 1. Bulk modulus (B) and elastic constants C11, C12 and C44

(in GPa) of ZrC–ZrN in TiC alloy systems.

Composition x B C11 C12 C44 References

ZrNix 1.00 245 523 107 121 a

1.00 246 304 114 511 b

1.00 285 611 117 129 c

0.93 232 454 121 124 d

ZrCx N1−x 0.25 239 507 106 142 a

0.50 233 487 106 158 a

0.75 227 472 104 165 a

ZrCx 1.00 219 452 102 154 a

1.00 232 272 134 429 b

1.00 247 522 110 160 c

0.94 223 472 99 150 e

N/A 223 470 100 160 f

Zrx Ti1−x C 0.75 221 453 105 155 a

0.50 225 454 111 155 a

0.25 233 474 113 165 a

TiCx 1.00 247 502 120 172 a

1.00 247 516 112 166 g

1.00 258 513 130 N/A h

1.00 221 470 97 167 i

N/A 242 513 106 178 j

0.95 253 540 110 180 k

0.91 242 515 106 179 e

N/A 242 500 113 175 l

a Self-supporting.
b Elastic moduli computed with the FLAPW method [21].
c Pseudo-potential results [23, 24].
d Elastic constants determined from neutron data [25].
e Experimental data [26].
f Estimations from phonon dispersion curves [27].
g FLAPW data [14].
h Pseudo-potential results [12].
i GGA-FLAPW results [28].
j Experimental values [29].
k Results derived from neutron investigations [30].
l Results obtained from ultrasonic measurements [31].

To understand the variation of both shear moduli with
composition for ZrCx N1−x , let us analyze the changes in the
DOS caused by an orthorhombic and a monoclinic strain.
But first let us analyze the DOSs of the unstrained cubic
carbonitride phases that are presented in figure 4. We note
several changes in the band structure of ZrC, when substituting
carbon to nitrogen: (i) the appearance of an additional low-

Figure 4. Densities of states (DOS) of cubic Zr4C4−nNn

(n = 0, 1, 2, 3, 4). The vertical dashed line locates the Fermi energy
(EF).

energy peak below 5 eV in the DOS and (ii) a Fermi-level
shift towards high energies. An analysis of the partial DOS
shows that two low-energy peaks originate from the non-metal
s states. The band below the DOS minimum at about 15 eV
consists of the non-metal p states and the metal d states (p–
d band). Finally, the band above the DOS minimum at about
15 eV originates mostly from the metal d states (d band).

In figure 5 we show the results of the comparison of the
DOSs of the unstrained and strained ZrC and ZrN. In the
case of the orthorhombic distortion (equation (1)), for both
the compounds, a reduction in the lattice parameter ay causes
an appreciable shift of the main peak towards low energies.
On the other hand, for ZrC, an increase in ax gives rise to an
increase in the number of states below the energy Emin (at about
15 eV) that separates the p–d and d bands. The expansion of
the unit cell of ZrN in the x direction leads to the appearance
of an additional peak just above Emin. The band energies of
the distorted structures are slightly lower compared to those
of the undistorted ones, which results from a shift of the main
peak of the DOS toward low energies. Further inspection of
the EB values did not reveal a distinct correlation between the
composition dependence of EB and C ′, a fact that can instead
be assigned to the difference in the positions of the additional

5
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Figure 5. Densities of states (DOS) of cubic (γ , δ = 0, ——)
monoclinic (γ = 0.27, - - - -) and orthorhombic (δ = 0.15, · · · · · ·)
Zr4C4 and Zr4N4 phases. The vertical solid and dashed lines locate
the Fermi energies associated with VEC = 32 (ZrC) and VEC = 36
(ZrN) in the cubic and monoclinic structures, respectively.

peaks of the DOS around Emin in ZrC and ZrN (cf figure 5).
In the orthorhombic distorted ZrC–ZrN alloys, both peaks are
present. On going from ZrC to ZrN, EF crosses the additional
peak above Emin and this correlates fairly well with a non-
monotonic variation of EB with composition.

We observe from figure 5 that the changes in the DOS
caused by a monoclinic strain (equation (2)) are similar for
ZrC and ZrN. In particular, the strain leads to an increase of
the DOS just below and above Emin, and the DOS minimum
at about 15 eV shifts towards higher energies. As a result,
EF is located at the high-energy slope of the strain-induced
peak. For the distorted compounds, the states below and above
Emin were found to be responsible for the positive and negative
contributions to C44, respectively. Indeed, monoclinic strain
causes the redistribution of states from the main peak region
towards the DOS minimum, which gives rise to an increase in
the band energy EB. The difference between the band energies
of strained and unstrained alloys (�EB) increases until the
strain-induced states below Emin are occupied completely. In
this case, the band structure contribution to the modulus C44

is positive. The maximum positive contribution is reached
for a small increment in VEC (∼0.2–0.25) when EF falls in
the DOS minimum of the strained material. On the other
hand, monoclinic strain also leads to a redistribution of states
towards the bottom of the d band and to a lowering of the Fermi
level. The contribution of these states to �EB is negative.
Consequently, with a further increase in VEC, EB decreases.
Hence, both the band energy and the modulus C44 will exhibit
a maximum as a function of composition, which is confirmed
by the results of the calculations of the band energy of the
distorted ZrC as a function of VEC, as shown in figure 6.
We note that this finding is consistent with the explanation for
the composition dependence of C44 for TiCxN1−x , presented
earlier in [13].

Figure 6. Band energy (EB) of Zr4C4 at finite monoclinic strain
(γ = 0.27) as a function of valence-electron concentration (VEC).
The values of EB are relative to the band energies of the unstrained
crystals.

Using the calculated elastic moduli B , C11, C12 and C44,
we estimated the moduli G and E and the Poisson ratio σ

for ZrCx N1−x and Zrx Ti1−xC. These quantities as functions
of composition are displayed in figures 7 and 8, together
with the experimental data from [6] for zirconium carbonitride
alloys. For ZrCx N1−x , our results reproduce fairly well the
experimental behavior of G and E with composition [6]. Our
data show a distinct maximum at x ∼ 0.7, in agreement
with experiment [6]. However, we note that the theoretical
characteristics G and E do not show local minima around
x = 0.3, as seems to be observed experimentally (cf
figure 7(a)), although due to the scattering in the experimental
data, additional data collection may be required to draw a
final conclusion on this apparent discrepancy. Comparing
the data presented in figures 3 and 7(a), it is clear that the
behavior of G and E are determined by the composition
dependence of C44. For B , we obtained a linear composition
dependence. The computed σ(x) curve shows a minimum
around x = 0.7 (cf figure 8(a)). All these findings, obtained
for ZrCx N1−x , speak in favor of a strength enhancement
at intermediate compositions (x ∼ 0.7–0.8) caused by the
composition dependence of the C44 modulus.

For the elastic constants B , G and E of Zrx Ti1−x C,
a negative deviation from the mixing rule is observed
at all compositions. Their composition dependence is
monotonic and similar to the one predicted for C ′ and C44

(cf figure 3). These findings do not confirm the strength
enhancement at intermediate compositions, as suggested from
experiments [10].

4. Conclusion

An ab initio pseudo-potential methodology was applied to
the calculation of the Gibbs free energy of mixing �Gmix,
the bulk modulus B , the elastic constants C11, C12 and
C44, the shear modulus G, the Young modulus E and the
Poisson ratio σ of zirconium carbonitride and zirconium–
titanium carbide alloys as functions of composition. For
ZrCx N1−x , the predicted moduli revealed an extremum in
their composition dependence, except for the C ′ = 1

2 (C11 −
C12) shear modulus that gradually increases with the valence-
electron concentration, VEC. This extremum value of the

6
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Figure 7. Calculated shear modulus (G), bulk modulus (B) and Young’s modulus (E) for (a) ZrCx N1−x and (b) Zrx Ti1−x C (open circles)
versus composition. The dashed curves are polynomial fits to the calculated data. The solid circles and solid lines are the experimental data
and their interpolations, respectively, from [6].

Figure 8. Poisson’s ratio (σ ) as a function of composition for (a) ZrCx N1−x and (b) Zrx Ti1−x C.

elastic constants is entirely determined by that of the shear
modulus C44 that shows a maximum value around VEC ∼
8.2–8.3. The latter is related to specific changes in the band
structure of ZrCx N1−x alloys induced by a monoclinic strain
that determines the shear moduli C44. In contrast to the
carbonitrides, the elastic constants of ZrC–TiC alloys exhibit
a monotonic composition dependence that can be attributed
to the similarity of the band structures of the two carbides
ZrC and TiC. The negative deviation of the elastic constants
and the positive deviation of the lattice constants from the
mixing rule as well as the positive formation energy over
the entire composition range of the homogeneous Zrx Ti1−x C
alloys indicate a weakening of the strength properties at
intermediate compositions. The computed chemically spinodal
and binodal decomposition curves show that face centered
cubic (fcc) Zrx Ti1−x C solid solutions should undergo a phase
decomposition into fcc ZrC and fcc TiC in a wide range of
compositions and temperatures.
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